rohan ganapavarapu

The Geometry of LLM Logits (an analytical outer bound)


1 Preliminaries

Symbol Meaning
$d$ width of the residual stream
$L$ number of Transformer blocks
$V$ vocabulary size, so logits live in $\mathbb R^{V}$
$h^{(\ell)}$ residual-stream vector entering block $\ell$
$r^{(\ell)}$ the update written by block $\ell$
$W_U\!\in\!\mathbb R^{V\times d},\;b\in\mathbb R^{V}$ un-embedding matrix and bias

Additive residual stream.
With (pre-/peri-norm) residual connections,

$$ h^{(\ell+1)} \;=\; h^{(\ell)} + r^{(\ell)},\qquad \ell=0,\dots,L-1. $$

Hence the final pre-logit state is the sum of $L+1$ contributions (block 0 = token + positional embeddings):

$$ h^{(L)} = \sum_{\ell=0}^{L} r^{(\ell)}. $$


2 Each update is contained in an ellipsoid

Why a bound exists.
Every sub-module (attention head or MLP)

  1. reads a LayerNormed copy of its input, so
    $|u|_2 \le \rho_\ell$ where $\rho_\ell := \gamma_\ell\sqrt d$ and $\gamma_\ell$ is that block’s learned scale;
  2. applies linear maps, a Lipschitz point-wise non-linearity (GELU, SiLU, …), and another linear map back to $\mathbb R^{d}$.

Because the composition of linear maps and Lipschitz functions is itself Lipschitz, there exists a constant $\kappa_\ell$ such that

$$ |r^{(\ell)}|_2 \;\le\; \kappa_\ell \qquad\text{whenever}\qquad |u|_2\le\rho_\ell. $$

Define the centred ellipsoid

$$ \mathcal E^{(\ell)} \;:=\; \bigl\{,x\in\mathbb R^{d}\;:\;\|x\|_2\le\kappa_\ell\bigr\}. $$

Then every realisable update lies inside that ellipsoid:

$$ r^{(\ell)}\;\in\;\mathcal E^{(\ell)}. $$


3 Residual stream ⊆ Minkowski sum of ellipsoids

Using additivity and Step 2,

$$ h^{(L)} \;=\;\sum_{\ell=0}^{L} r^{(\ell)} \;\in\;\sum_{\ell=0}^{L} \mathcal E^{(\ell)} \;=:\;\mathcal E_{\text{tot}}, $$

where
$\displaystyle \sum_{\ell} \mathcal E^{(\ell)}= \mathcal E^{(0)} \oplus \dots \oplus \mathcal E^{(L)}$ is the Minkowski sum of the individual ellipsoids.


4 Logit space is an affine image of that sum

Logits are produced by the affine map $x\mapsto W_U x+b$.
For any sets $S_1,\dots,S_m$,

$$ W_U \Bigl(\bigoplus_{i} S_i\Bigr) = \bigoplus_{i} W_U S_i. $$

Hence

$$ \text{logits} \;=\; W_U h^{(L)} + b \;\in\; b \;+\; \bigoplus_{\ell=0}^{L} W_U\mathcal E^{(\ell)}. $$

Because linear images of ellipsoids are ellipsoids, each $W_U\mathcal E^{(\ell)}$ is still an ellipsoid.


5 Ellipsotopes

An ellipsotope is an affine shift of a finite Minkowski sum of ellipsoids.
The set

$$ \boxed{\; \mathcal L_{\text{outer}} \;:=\; b \;+\; \bigoplus_{\ell=0}^{L} W_U\mathcal E^{(\ell)} \;} $$

therefore is an ellipsotope.


6 Main result (outer bound)

Theorem.
For any pre-norm or peri-norm Transformer language model whose blocks receive LayerNormed inputs, the set $\mathcal L$ of all logit vectors attainable over every prompt and position satisfies
$$ \mathcal L \;\subseteq\; \mathcal L_{\mathrm{outer}}, $$ where $\mathcal L_{\mathrm{outer}}$ is the ellipsotope defined above.

Proof.
Containments in Steps 2–4 compose to give the stated inclusion; Step 5 shows the outer set is an ellipsotope. ∎


7 Remarks & implications